
CS2103 Review Ques0ons

You need to be able to answer these ques0ons confidently!

Requirements Gathering / Specifica0on

1. Who are typical stakeholders of a so4ware project?

users, customer, developers?, dev company? govt? law enforcement? special interest groups?,
public at large? …

2. Why asking the user is not enough?

The user is not the only stakeholder of the project. They can communicate the problem but rarely
the solu0on.

3. How do models help to combat complexity?

Models can provide a simpler view of a complex en0ty by capturing only a selected aspect.

Models can be used to analyse complex en00es related to soOware development. Models of the
problem domain can be built to aid the understanding of the problem to be solved.

4. Why use UML?

UML is general purpose and known to all.

5. When should we prefer use case descrip.ons over user stories?

User Stories: User needs and jus0fica0ons.

Use Case Descrip0on: User-system interac0ons for a usage scenario

There is no need to prefer one over the other, both serve a different purpose and are equally
useful for requirement specifica0on.

6. Comment on this step that appeared in a use case descripIon: “user clicks the open buLon”

This step contains UI-specific details such as “Open BuZon”. Instead, it should communicate the
inten0on of the actor. For example: “User chooses to open a folder”.

7. What does an OODM capture?

• An OODM captures how objects in the problem domain interact with each other in the real
world before we emulate them in the solu0on.

• OODMs represent the class structure of the problem domain and not their behaviour.

Note: OODMs do not contain solu.on specific classes

8. What does an object diagram capture?

Object diagrams are used to capture the object structure at a given point of 0me that results from
a design represented by a given class diagram.

9. How to use object diagrams in analysis phase?

During the analysis phase of a project, you might create a class diagram to describe the structure
of a system and then create a set of object diagrams as test cases to verify the accuracy and
completeness of the class diagram.

10. What are non-func.onal requirements?

• Non-func0onal requirements specify the constraints under which the system is to be
developed and operated.

• Examples of non-func0onal requirements include: Data requirements, Environment
requirements, efficiency, fault tolerance, portability, reliability, response 0me, scalability,
security, testability,…

11. What’s the difference between requirements specifica.on and system specifica.on?

Requirement specifica0ons are wriZen in terms of the problems that need to be solved, while
system specifica0on is wriZen in terms of how the system solve those problems.

• Requirements specifica0on (user requirements) define the problem / need (a.k.a what the
user wants the solu0on to do but it is NOT the solu0on)

• System specifica0on is more about the solu0on, it specifies (using precise and contras0ng
statements) how the system will meet the user requirements. It is s0ll what the solu0on
will do, not how will the solu0on work, but it is how the system will meet the
requirements.

12. For what purpose do you use sequence diagrams?

To model interac0ons between various en00es in system in a specific scenario. It is useful to verify
that the design of the internal interac0ons is able to provide the expected outcomes.

• High Level: Model how components of a system interact with each other to respond to a
user ac0on.

o (Example: How to UI interacts with the Controller and Model components)
• Low Level: Model how objects inside a component interact with each other to respond to a

method call that it received from another component.
o (Example: How the Shopping Cart component in an online store responds to a

method call it received from the User Interface)

Design

13. Complete this sentence: A is coupled to B if ….

• A has access to the internal structure of B
• A and B depends on the same global variable
• A calls B
• A receives an object of B as a parameter or return value
• A inherits from B
• A and B are required to follow the same data format or communica0on protocol.

14. What is a pa>ern?

An elegant reusable solu0on to a commonly recurring problem within a given context of soOware
design. (In this case, paZern refers to a recurring problem)

15. What’s the difference between separa.on of concerns and single responsibility principle?

Separa0on of concerns: Separate the code into dis0nct sec0ons such that each sec0on addresses a
separate concern.

Single responsibility principle: A class should only have and only have one reason to change. This
means that a class should only have one responsibility.

Remarks
• InteresIngly SOC and SRP are closely related.
• SeparaIon of Concerns is a broader concept that emphasizes breaking down a system into

disInct loosely coupled components, each addressing a specific concern. The goal is to
make the system more modular and easier to understand and maintain.

• Single Responsibility Principle on the other hand is a more specific guideline focusing on
individual classes. It advises that a class should have a single responsibility, meaning that it
should encapsulate one reason to change. This promotes code that is easier to
understand, maintain and modify, as changes to one responsibility does not affect other
classes.

Project Management

16. Is Unified process itera.ve or sequen.al?

Unified process is itera0ve.

17. What’s the difference between buffers and padding?

A buffer is 0me set aside to absorb any unforeseen delays because es0ma0ons for soOware
development are notoriously hard.

Padding would refer to infla0ng task es0mates (extra 0me added to a schedule) just to make you
feel more confident in the es0mate.

18. What’s the benefit of idenIfying the cri.cal path of a project?

Cri0cal paths iden0fy the sequence of project tasks that determine a project’s dura0on and outline
important deadlines to meet to deliver a project on 0me. In short, the cri0cal path is the longest
distance, or dura0on of 0me, between the start of a project and its comple0on.

Implementa0on

19. How is refactoring different from bug fixing?

Bug fixing alters the external behaviour of a component while refactoring improves a program’s
internal structure in small steps without modifying its external behaviour.

20. How are asserIons different from excepIons?

Asser0ons are used for verifying assump0ons about the program state while excep0ons are used
to deal with unusual but not en0rely unexpected situa0ons.

Tools

21. Is Git centralized or distributed RCS?

Git is a distributed Revision Control System (RCS).

22. What disInguishes a plaborm from a framework or a library?

• A plagorm provides a run0me environment for applica0ons.
• Frameworks are a reusable implementa0on of a soOware providing generic func0onality

that can be selec0vely customized to produce a specific applica0on.
• Libraries are meant to be used as it is as they are a collec0on of modular code that is

general and can be used by other programs.

23. Describe CI (ConInuous IntegraIon).

• The precursor to CI is build automa0on, which automates the steps of the build process
which can include steps such as pulling code from the RCS, compiling, running automated
tests, upda0ng of release documents, packaging into a redistributable and so on.

• CI is an extreme applica0on of build automa0on in which integra0on, building, and tes0ng
happens immediately aOer each code change.

Quality Assurance / Tes0ng

24. Is acceptance tesIng validaIon or verificaIon?

Acceptance tes0ng is more towards valida0on than verifica0on as it is to check if the system was
built to do what it was intended to do based on the use case specifica0on defined at the beginning
of the project.

25. Give one pro and one con of white box test case design.

White box test case design is more thorough and extensive than black box tes0ng due to the ability
to understand the program’s internal workings. White box test case design is ineffec0ve in a code
base that changes quickly.

26. How is integraIon tesIng different from unit tesIng?

Integra0on tes0ng aims to discover bugs in the glue code by tes0ng whether different parts of the
soOware work together as intended. Addi0onal test cases are wriZen to focus on the interac0on
between parts.

27. How does equivalence parIIoning help in increasing E&E of tesIng?

Equivalence par00oning can help to increase efficiency of tes0ng by reducing redundant test cases
and by ensuring that all par00ons are tested, it increases the effec0veness of tes0ng by increasing
the chances of finding bugs.

28. Give an advantage of TDD.

High test coverage because a test is wriZen for each feature.

29. Which is stronger: statement coverage or path coverage?

Path coverage is stronger. Path coverage measures the number of possible paths given a part of the
code executed. OOen it is the case that the number of possible paths is more extensive that
covering the number of lines of code executed.

30. What is the purpose of dependency injecIon?

The purpose of dependency injec0on is to inject stubs to isolate the soOware under tes0ng from
its dependencies so that it can be tested in isola0on.

Less known facts

1. Two unidirec0onal associa0ons do not always equate to a single bidirec0onal associa0on.
2. User stories can also capture non-func0onal requirements.
3. Some facts about use cases:

a. A use case can involve mul0ple actors.
b. An actor can be involved in many use cases.
c. A single person / system can play many roles.
d. Many persons / systems can play a single role.

4. Use cases only describe externally visible behavior, not internal details of a system.
5. If class A cannot compile without class B, class A is dependent on class B.
6. Code alone may not be enough to draw the matching UML diagram.
7. OODMs do not show methods or navigabili0es

8. Here are some less obvious dependencies that you should list down in your class diagram.

Example 1
class Activity{
 private Watcher[] watchers = new Watcher[ProgressWatcher.MAX];
 //...

 void watch(Watcher w){
 //add w to watchers
 }

 Activity getInstance(){
 //...
 }
}
interface Watcher {
 void update(int value);
}

abstract class ProgressWatcher
implements Watcher {
 static final int MAX = 10;
}

Addi0onal Informa0on

• An Ac0vity object can be composed of other Ac0vity objects i.e., sub-ac0vi0es.
• A Watcher object may not be associated with more than 5 Ac0vity objects.
• UiWidget class inherits the ProgressWatcher.

Suggested Answer

Class Diagrams: Okay to omit methods, visibili0es, navigability.

Object Diagrams: Okay to omit variables and variable names.

Sequence Diagrams: Okay to omit ac0va0on bars and return arrows if omiong it does not lead to
ambigui0es.

Ac0vity Diagrams: Okay to omit the diamond at the end of the alterna0ve path if it doesn’t
introduce ambigui0es.

